LASERDATA, founded in 2007 as a spin-off from the University of Innsbruck
(Department of Geography) and the alp-S Center for Climate Change Adaptation,
is a research and development driven company offering services and software solutions to different markets, ranging from
research institutions to companies and governmental agencies.
From our earliest days, we have developed the software package LIS and offered it for sale. We also use it
ourselves to provide enhanced services and solutions to our customers. Trust in our experience and
expert knowledge to complete even challenging projects.
Riegl Laser Measurement Systems: programming of software plug-ins based on LIS tools
Austrian Power Grid: Austria-wide UAV-based LiDAR data acquisition of transformer stations
City of Salzburg: 3D tree models and LOD 2 building models derivation
Forestry Corporation New South Wales: automated forest parameter extraction per tree
Federal State of Baden-Wuerttemberg: LiDAR based vegetation analyses along rivers
North Tyrol: animated 3D visualization of flooding along river Inn
Canton Basel-Landschaft: large coverage LOD 2 building model derivation
City of Vienna: solar potential on CityGML building models
State of Tyrol: large coverage solar potential analysis
North Tyrol: building footprints and LOD 1 building models
North Tyrol: LiDAR based vegetation map layer
North Tyrol: high electricity power line mapping
Canton Basel-Stadt: single tree cadastre
Canton Basel-Stadt: ALS point cloud classification
State of Carinthia: large coverage solar potential analysis
Cautus Geo, Norway: structural geology and slope stability analyses
State of Salzburg: large coverage solar potential analysis
State of Carinthia: database solution for state-wide LiDAR data management
South Tyrol: database solution for state-wide LiDAR data management
Canton Basel-Stadt: database solution for LiDAR data management
Federal State of Baden-Wuerttemberg: break line detection of river dams
State of Salzburg: forest mask delineation
University of Innsbruck
Catholic University of Eichstaett-Ingolstadt
University of Applied Sciences Stuttgart
University of Applied Sciences Villach
Martin Luther University Halle-Wittenberg
Friedrich-Alexander-University Erlangen-Nuernberg
Friedrich-Schiller-University Jena
Technical University of Vienna
Max Planck Institute for Biogeochemistry
Austrian Institute of Technology
Federal Institute for Geosciences and Natural Resources (BGR)
University of Bologna
Landscape Visualization and Modeling Lab, ETH Zurich
National Forest Centre, Zvolen
Warsaw University Of Life Science
Department of Civil Engineering, National Chiao Tung University, Taiwan
VSB Technical University of Ostrava, Czech Republic
Charles Darwin University, Australia
Institut National de l’Environnement Industriel et des Risques (Ineris), France
University of Graz
University of Natural Resources and Life Sciences, Vienna
Horton, P.; Lombardo, L.; Mergili, M.; Wichmann, V.; Dahal, A.; van den Bout, B.; Guthrie, R.; Scheikl, M.; Han, Z.; Sturzenegger, M. (2024): Regional Debris-Flow Hazard Assessments. In: Jakob, M.; McDougall, S.; Santi, P. (eds): Advances in Debris-flow Science and Practice. Geoenvironmental Disaster Reduction: 383-432. Springer, Cham. (Link)
Ihle, M.-E.; Wichmann, V. (2024): Blurring Boundaries Between Scientific and Artistic Representation of Landscapes. In: Journal of Digital Landscape Architecture, 9-2024: 253-26. Proceedings of the Digital Landscape Architecture 2024 Conference - New Trajectories in Computational Urban Landscapes and Ecology. (Link)
Fey, C.; Voit, K.; Wichmann, V.; Zangerl, C.; Mair, V. (2021): Multi-method approach for high resolution 3D data based process analyses of compound rock slides. In: EGU General Assembly 2021, EGU21-1385. (Link)
Fey, C.; Wichmann, V.; Voit, K.; Zangerl, C. (2021): Imagery and laser scanning based process analyses of deep-seated rockslides. In: Proceedings Disaster Research Days, 12-21 October, 2021, Disaster Competence Network Austria: 91. (Link)
Kollert, A.; Rutzinger, M.; Bremer, M.; Kaufmann, K.; Bork-Hüffer, T. (2021): Mapping of 3D eye-tracking in urban outdoor environments. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021: 201-208. (Link)
Puliti, S.; Pearse, G. D.; Watt, M. S.; Mitchard, E.; McNicol, I.; Bremer, M.; Rutzinger, M.; Surovy, P.; Wallace, L.; Hollaus, M.; Astrup, R. (2021): A New Drone Laser Scanning Benchmark Dataset for Characterization of Single-Tree and Forest Biophysical Properties. In: Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 12-16 July, 2021: 728-730. (Link)
Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. (2020): Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region. In: International Journal of Applied Earth Observation and Geoinformation, Volume 94: 102208. (Link)
Mayr, A.; Bremer, M.; Rutzinger, M. (2020): 3D point errors and change detection accuracy of unmanned aerial vehicle laser scanning data. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020: 765-772. (Link)
Rutzinger, M.; Anders, K.; Bremer, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Scaioni, M.; Zieher, T. (2020): Training in innovative technologies for close-range sensing in alpine terrain - 3rd Edition. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020: 243-250. (Link)
Bremer, M.; Wichmann, V.; Rutzinger, M.; Zieher, T.; Pfeiffer, J. (2019): Simulating unmanned-aerial-vehicle based laser scanning data for efficient mission planning in complex terrain. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13: 943-950. (Link)
Bremer, M.; Zieher, T.; Pfeiffer, J.; Petrini-Monteferri, F.; Wichmann, V. (2019): Monitoring der Großhangbewegung Reissenschuh (Schmirntal, Tirol) mit TLS und UAV-basiertem Laserscanning. In: Hanke, K.; Weinold, T.: 20. Internationale Geodätische Woche Obergurgl 2019: 321-330. (Link)
Mayr, A.; Bremer, M.; Rutzinger, M.; Geitner, C. (2019): Unmanned aerial vehicle laser scanning for erosion monitoring in Alpine grassland. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5: 405-412. (Link)
Pfeiffer, J.; Zieher, T.; Rutzinger, M.; Bremer, M.; Wichmann, V. (2019): Comparision and time series analysis of landslide displacement mapped by airborne, terrestrial and unmanned aerial vehicle based platforms. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5: 421-428. (Link)
Zieher, T.; Bremer, M.; Rutzinger, M.; Pfeiffer, J.; Fritzmann, P.; Wichmann, V. (2019): Assessment of landslide-induced displacement and deformation of above-ground objects using uav-borne and airborne laser scanning data. In: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5: 461-467. (Link)
Bremer, M.; Wichmann, V.; Rutzinger, M. (2018): Multi-temporal fine-scale modelling of Larix decidua forest plots using terrestrial LiDAR and hemispherical photographs. In: Remote Sensing of Environment 206: 189-204. (Link)
Eisank, C.; Petrini-Monteferri, F.; Meißl, G.; d’Oleire-Oltmanns, S.; Vecchiotti, F.; Wichmann, V.; Georges, C.; Kociu, A.,; Stötter, J. (2018): MorphoSAT - Automated geomorphological mapping based on satellite data. In: Geophysical Research Abstracts, Vol. 20, EGU2018-14726 (Link) (Poster)
Knoebl, K.; Schattan, P.; Fey, C.; Wichmann, V. (2018): Analysis of the spatio-temporal development of snow surface wetness in a high alpine area using terrestrial laser scanning reflectivity. In: Proceedings, International Snow Science Workshop, Innsbruck, Austria: 313-317. (Link)
Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V. (2018): Dense image matching of terrestrial imagery for deriving high-resolution topographic properties of vegetation locations in alpine terrain. In: International Journal of Applied Earth Observation and Geoinformation, Volume 66: 146-158. (Link)
Pfeiffer, J.; Zieher, T.; Bremer, M.; Wichmann, V.; Rutzinger, M. (2018): Derivation of Three-Dimensional Displacement Vectors from Multi-Temporal Long-Range Terrestrial Laser Scanning at the Reissenschuh Landslide (Tyrol, Austria). In: Remote Sensing 2018, 10(11), 1688 (Link)
Strauhal, T.; Wichmann, V.; Koppensteiner, M.; Fey, C.; Zangerl, C. (2018): Semi-automated rock mass characterization from scanline and terrestrial LIDAR data in the Ötztal-Stubai crystalline complex (Kühtai, Austria). In: Geophysical Research Abstracts, Vol. 20, EGU2018-12248 (Link)
Wichmann, V.; Strauhal, T.; Fey, C.; Perzlmaier, S. (2018): Derivation of space-resolved normal joint spacing and in situ block size distribution data from terrestrial LIDAR point clouds in a rugged Alpine relief (Kühtai, Austria). In: Bulletin of Engineering Geology and the Environment (Link)
Bremer, M.; Wichmann, V.; Rutzinger, M. (2017): Calibration and Validation of a Detailed Architectural Canopy Model Reconstruction for the Simulation of Synthetic Hemispherical Images and Airborne LiDAR Data. Remote Sens. 2017, 9, 220 (Link)
Fey, C.; Wichmann, V.; Rett, H.; Perzlmaier, S. (2017): Multi-temporal Long-range Laser Scanning for Spatial Deformation Monitoring of Alpine Slopes. In: Hanke, K.; Weinold, T.: 19. Internationale Geodätische Woche Obergurgl 2017: 247-252. (Link)
Fey, C; Wichmann, V; Zangerl, C; (2017): Reconstructing the evolution of a deep seated rockslide (Marzell) and its response to glacial retreat based on historic and remote sensing data. In: Geomorphology, Vol. 298: 72-85. (Link)
Wichmann, V., 2017: The Gravitational Process Path (GPP) model (v1.0) - a GIS-based simulation framework for gravitational processes. In: Geosci. Model Dev., 10: 3309-3327. (Link)
Bremer, M.; Mayr, A.; Wichmann, V.; Schmidtner, K.; Rutzinger, M. (2016): A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models. In: Computers, Environment and Urban Systems 57: 144-154. (Link)
Fey, C.; Wichmann, V. (2016): Long-range terrestrial laserscanning for geomorphological change detection in alpine terrain - handling uncertainties. In: Earth Surf. Process. Landforms, DOI:10.1002/esp.4022 (Link)
Fey, C.; Wichmann, V.; Prager, C.; Rett, H.; Perzlmaier, S. (2016): Long range terrestrial laser scanning (TLS) for the deformation monitoring of alpine slopes. In: Abstract Volume: GeoTirol 2016, Annual Meeting DGGV, Innsbruck, 371 pp. (Link)
Prager, C.; Fey, C.; Perzlmaier, S.; Strauhal, T.; Wichmann, V. (2016): Discontinuity analyses using methodically different in-situ and remote sensing measurements (Simmering/Haiming case study, Tyrol). In: Abstract Volume: GeoTirol 2016, Annual Meeting DGGV, Innsbruck, 371 pp. (Link)
Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. In: Geoscientific Model Development 8: 1991-2007. (Link)
Fey, C.; Rutzinger, M.; Wichmann, V.; Prager, C.; Bremer, M.; Zangerl, C. (2015): Deriving 3D displacement vectors from multi-temporal airborne laser scanning data for landslide activity analyses. In: GIScience & Remote Sensing 52/4: 437-461. (Link)
Hilger, L.; Haas, F.; Heckmann, T.; Wichmann, V.; Trappe, M.; Becht, M. (2015): Reconstruction of historic soil erosion rates in a small lake catchment of the Melrakkasletta peninsula of northeast Iceland using tephrochronology and ground-based LiDAR data. In: Zeitschrift für Geomorphologie / Annals of Geomorphology / Annales de Geomorphologie 59/2: 243-263. (Link)
Petrini-Monteferri, F.; Riedl, M.; Bremer, M.; Georges, Ch.; Wichmann, V. (2015): Landesweite Ableitung von Gebäudemodellen aus Laserscanningdaten und deren Nutzung bei der Tiroler Landesregierung. In: Strobl, J.; Zagel, B.; Griesebner, G.; Blaschke, T.: Angewandte Geoinformatik 2015: Beiträge zum 27. AGIT-Symposium Salzburg. Heidelberg: Wichmann, ISBN 978-3-87907-557-7: 50-55. (Link)
Wichmann, V.; Bremer, M.; Lindenberger, J.; Rutzinger, M.; Georges, C.; Petrini-Monteferri, F. (2015): Evaluating the potential of multispectral airborne LIDAR for topographic mapping and land cover classification. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5: 113-119. (Link)
Petrini-Monteferri, F.; Posch, M.; Bremer, M.; Georges, C.; Wichmann, V.; Dürauer, S.; Sam, C. (2014): VERTISOL - das weltweit erste Verfahren zur großflächigen Erstellung von Solarkatastern für Gebäudefassaden dargestellt am Beispiel der Stadt Wien. In: Strobl, Josef; Blaschke, Thomas; Griesebner, Gerald; Zagel, Bernhard: Angewandte Geoinformatik 2014: Beiträge zum 26. AGIT-Symposium Salzburg. Heidelberg: Wichmann: 137-142.
Rieg, L.; Wichmann, V.; Rutzinger, M.; Sailer, R.; Geist, T.; Stötter, J. (2014): Data infrastructure for multitemporal airborne LiDAR point cloud analysis – Examples from physical geography in high mountain environments. In: Computers, Environment and Urban Systems 45: 137-146. (Link)
Sailer, R.; Rutzinger, M.; Rieg, L.; Wichmann, V. (2014): Digital elevation models derived from airborne laser scanning point clouds: appropriate spatial resolutions for multi-temporal characterization and quantification of geomorphological process. In: Earth Surface Processes and Landforms 39/2: 272-284. (Link)
Bremer, M.; Rutzinger, M.; Wichmann, V. (2013): Derivation of tree skeletons and error assessments using LiDAR point cloud data of varying quality. In: ISPRS Journal of Photogrammetry and Remote Sensing 80: 39-50. (Link)
Bremer, M.; Rutzinger, M.; Wichmann, V. (2013): Segment based shape matching in terrestrial laser scanning point clouds. In: Geophysical Research Abstracts 15, p. 11968. (Link)
Bremer, M.; Wichmann, V.; Rutzinger, M. (2013): Eigenvalue and Graph-Based Object Extraction from Mobile Laser Scanning Point Clouds. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-5: 55-60. (Link)
Setiawan, A. M.; Rutzinger, M.; Wichmann, V.; Stötter, J.; Sartohadi, J. (2013): Evaluation of methods for digital elevation model interpolation of tillage systems. In: Journal of Natural Resources and Development 03: 128-139. (Link)
Fey, C.; Rutzinger, M.; Prager, C.; Wichmann, V.; Zangerl, C. (2012): Landslide Investigations in Alpine Permafrost Environment using Airborne Laser Scanning. In: One Decade of airborne laser scanning at Hintereisferner. October 3.-6. 2012, University Center Obergurgl. Workshop program. Innsbruck: Eigenverlag - Universität Innsbruck.
Fey, C.; Rutzinger, M.; Wichmann, V.; Prager, C.; Zangerl, C. (2012): Strukturanalysen an Massenbewegungen in Permafrostregionen auf Basis von Airborne Laserscanning Daten. In: PANGEO Austria 2012 - Book of Abstracts. Salzburg: Universität Salzburg, p. 41.
Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M. (2012): Runout analysis of a large rockfall in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes. In: Earth Surface Processes and Landforms 37/13: 1444-1455. (Link)
Jochem, A.; Höfle, B.; Rutzinger, M.; Zipf, A.; Wichmann, V. (2012): Area-wide roof plane segmentation in airborne LiDAR point clouds. In: Computers, Environment and Urban Systems 36: 54-64. (Link)
Kleindienst, H.; Krause, K.-H.; Peters-Walker, D.; Petrini-Monteferri, F.; Strellen, T.; Wichmann, V. (2012): Modellierung von Abfluss und Geschiebetransport in alpinen Wildbacheinzugsgebieten mit SimAlp/HQsim. In: Journal für Wildbach-, Lawinen-, Erosions- und Steinschlagschutz 76/169: 154-166.
Rieg, L.; Sailer, R.; Sproß, M.; Rutzinger, M.; Wichmann, V. (2012): Comparison of different DTM resolutions for surface change calculations in a high mountain environment. In: Geophysical Research Abstracts 14, p. 9296 (Link)
Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M. (2011): Quantification and Modeling of Fluvial Bedload Discharge from Hillslope Channels in two Alpine Catchments (Bavarian Alps, Germany). In: Zeitschrift für Geomorphologie / Annals of Geomorphology / Annales de Geomorphologie 55/Suppl. 3: 147-168. (Link)
Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M. (2011): Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning. AGU Fall Meeting 2011, 5.-9.12.2011, San Francisco, California, USA
Petrini-Monteferri, F.; Schmidt, F.; Wever, C.; Wichmann, V.; Georges, C. (2010): Einsatz von mobilem Laserscanning für Planungszwecke am Beispiel des Kantons Basel-Stadt. In: Strobl, J.; Blaschke, T.; Griesebner, G. (Eds.): Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT-Symposoium Salzburg. Heidelberg: Wichmann, ISBN 978-3-87907-495-2: 18-23.
Petrini-Monteferri, F.; Wichmann, V.; Georges, C.; Mantovani, D.; Stötter, J. (2009): Erweiterung der GIS Software SAGA zur Verarbeitung von Laserscanning-Daten der Autonomen Provinz Bozen-Südtirol. In: Strobl, J., Blaschke, T. & G. Griesebner [Eds.]: Angewandte Geoinformatik 2009, Beiträge zum 21. AGIT-Symposium Salzburg, Wichmann Verlag, Heidelberg: 618-623.
Petrini-Monteferri, F.; Wichmann, V.; Georges, C.; Mantovani, D.; Stötter, J. (2009): LIS - ein Informationssystem für Laserscanning-Daten bei der Autonomen Provinz Bozen-Südtirol. In: Chesi, G.; Weinold, T. [Eds.]: 15. Internationale Geodätische Woche Obergurgl 2009, Wichmann Verlag, Heidelberg: 232-235.
Wichmann, V.; Heckmann, T.; Haas, F.; Becht, M. (2009): A new modelling approach to delineate the spatial extent of alpine sediment cascades. GIS and SDA applications in Geomorphology. In: Geomophology, 111 (1/2): 70-78. (Link)
Heckmann, T.; Haas, F.; Wichmann, V.; Morche, D. (2008): Sediment budget and morphodynamics of an alpine talus cone on different timescales. In: Z. Geomorph. N.F. 52, Suppl. 1: 103-121. (Link)
Petrini-Monteferri, F.; Drexel, P.; Georges, C.; Wichmann, V. (2008): Aufbau eines Laserscanningdaten Informationssystems für das Landesvermessungsamt Feldkirch (Land Vorarlberg). In: Strobl, J., Blaschke, T. & G. Griesebner [Eds.]: Angewandte Geoinformatik 2008, Beiträge zum 20. AGIT-Symposium Salzburg, Wichmann Verlag, Heidelberg: 47-52.
Wichmann, V.; Rutzinger, M.; Vetter, M. (2008): Digital terrain model generation from airborne laser scanning point data and the effect of grid-cell size on the simulation results of a debris flow model. In: Böhner, J.; Blaschke; Montanarella, L. [Eds.]: SAGA – Seconds Out. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, Vol.19: 103-113. (Link)
Climate change and glacier retreat are no longer a far-away future's forecast, rather they are the present's reality, also in Austria. Only in a few years, several glaciers in Austria will not be accessible any longer for the purpose of climate change education due to glacier retreat. Therefore, this project "Freeze For Future - Glacier Worlds" wants to use today's window of opportunity to "freeze" the currently still possible glacier walks for future climate change education by applying Virtual Reality (VR). Moreover, the virtual "Freeze For Future - Glacier Worlds" enable convenient and easy "access to the glaciers" for numerous young people in climate change education settings without major organisational effort, financial costs, as well as an additional carbon footprint for traveling. Furthermore, this project enables young people with disabilities in the first place to experience and "access glaciers" (as well as subsequently other settings for Education for Sustainable Development) due to the VR environment.
Data from octocopter flights recorded by different laser scanners and cameras as well as subsequently processed with a complex software will create to the virtual three-dimensional "preservation of the glaciers" for this project at the time of recording. Furthermore, the possibility to visualize the glacier's volume loss over time based on the repeated data acquisition due to the impressive glacier retreat, highlight this project's informative as well as digitally explorative potential. In order to provide young people with an effective VR tool for climate change education, the input for the VR environment will be collected, created and designed by young people themselves. In an iterative process including evaluation and development, the prototype should develop into the final product over the course of the project. In total, more than 1,000 pupils will therefore participate directly and indirectly in the project. In this citizen science project young people will be supported and accompanied by national and international experts from climate change education as well as from the field of VR education and laser- and copter- technology.
The virtual environments created in this project should enable more people to experience nature and thus the value of its protection. The Alpine glaciers, its level is approximately 10 years behind the actual climate conditions, show clearly how urgent it is to "Freeze For Future", before it is too late.
Project description on the KidZ.21-homepage
Project description on the webpage of the funding authority
Austrian Federal Ministry of Education, Science and Research
In the "Smart Vegetation" project (Austrian Research Promotion Agency) value-added geodata sets are to be generated on the basis of laser scanning data, which will allow a fine-scale evaluation of the ecosystem services provided by trees in urban areas and along river courses. This will provide an insight into (micro)climatic interactions and the cooling effect of trees. Shading and transpiration can have significant cooling effects on the environment, especially during summer heat waves. Looking at recent summer heat waves and corresponding future climate forecasts, these are of high relevance for sustainable, health-relevant planning of cities and public areas.
The software tools developed for this purpose will be used to derive new GIS-ready tree inventories and tree models that:
"i2MON" (Integrated Impact Monitoring in the frame of the EU Research Fund on Coal and Steel, number 800689) was dedicated to deliver the mining sector, government, citizens and all stakeholders affected by previous and current mining activity with a set of extended monitoring, measurement and analysis tools for identification of mining impact related to ground and slope movements and support with essential information concerning the ground surface condition at mining and post mining areas.
The work included the development of innovative monitoring tools for enhanced ground and slope motion monitoring using advanced terrestrial (low-cost geodetical, geotechnical sensors), both laser and radar technology, spaceborne (Sentinel, TerraSAR-X PSI) and airborne (UAV) technology delivering continuous, near real time data acquisition and extensive areal information. As important part ground and slope motion models (FEM) and spatial deformation analyses methods (point-cloud deformation detection) were developed, adapted and directly integrated with the monitoring information to dramatically improve the temporal and spatial information density and result exploitation.
The "3D VISION" project was funded by the Austrian Research Promotion Agency (project number 867906) in the frame of the 10th COIN "Network" call and supports the City of Vienna in the fight against urban heat islands. It was a collaboration between the companies LASERDATA, Grid-IT, Soma Architecture and Spatial Services, working together on a specific site, the Franz-Josefs-Station in Vienna.
The project developed new methods and processing pipelines for the automated exploitation of 3D point cloud data. Point cloud data was pre-processed with innovative evaluation methods, automatically classified and converted into high-quality, detailed vector models of buildings, vegetation and infrastructure as well as into digital plans. These results were taken up and further refined by the network partners to develop industry-specific new products, to perform climatic simulations, and to create 3D (online) viewers, augmented reality environments and innovative services.
Laserdata GmbH
Technikerstr. 21a
A-6020 Innsbruck
Tel: +43 (0)512 507 48606
Fax: +43 (0)512 507 48699
E-mail: c9a6afafa0aaac89a5a8baacbbada8bda8e7a8bd
Internet: www.laserdata.at
UID: ATU63335108
Commercial register no.: FN291723f
Commercial court: Innsbruck
Managing director: Frederic Petrini-Monteferri